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Introduction
Human well-being is dependent on natural and managed ecosystems, which provide crucial functions and 
resources for nearly everything we eat, make, and do.1 Clean water and air, soils and nutrients for food 
production, timber for construction, and other supplies and services we depend on all come from nature. 
But many ecosystems are increasingly facing climate risks and impacts that alter ecological processes and 
functions and affect species across all levels of the food web. These changes in turn can result in reduced 
biodiversity and diminished ecosystem services (the benefits received from natural systems; Figure 8.1).2,3 
Relationships between humans and ecosystems, such as the kinship values that many Black, Indigenous and 
Tribal communities experience with regard to nature, are also endangered by these changes.4,5
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Climate Change and Ecosystems, Biodiversity, and Ecosystem Services

Climate and non-climate stressors together affect biodiversity, ecosystems, and the services they provide.

Figure 8.1. Species and ecosystems respond to pressures in different ways, such as shifting their locations or 
transforming into new, often degraded systems less able to provide ecosystem services.6 Adaptation measures 
can help species and ecosystems cope with some climate impacts but are not always going to be effective or 
feasible, requiring increasingly difficult decisions on what resources to prioritize and what changes to accept.7 
Adapted from Lipton et al. 2018.8
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Climate change impacts are already seen in the deterioration of ecosystem functions, as well as in changes 
in marine and terrestrial primary productivity (growth of plants and algae) and the balance between 
primary production and respiration (i.e., carbon balances).2 Ecosystem degradation increases risks to human 
populations, such as in coastal areas where loss of wetlands increases damage from storms (KM 9.2). Other 
observed impacts include range shifts as species expand into new regions or disappear from unfavorable 
areas, altered timing of seasonal and life-cycle events, increased mortality and localized extinctions, and 
spread of diseases and invasive species (Figure 8.2).9,10 These risks are projected to grow with additional 
degrees of warming (Figure 8.3),11,12 as well as with increased atmospheric carbon dioxide, which contributes 
to the acidification of marine ecosystems (KM 10.1).13
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Regional Impacts

All US regions are experiencing impacts of climate change on species, ecosystems, and ecosystem services.

Figure 8.2. Regional examples show the wide range of potential ecosystem impacts and their socioeconomic 
ramifications. Some changes may be occurring in more than one region (e.g., loss of coral reefs in both Hawai‘i 
and the US-Affiliated Pacific Islands [USAPI] and in the US Caribbean). Figure credit: Rutgers University and USGS.
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Ecosystem Impacts and Risks

Ecosystem impacts and risks increase at higher levels of global warming. 

Figure 8.3. As global surface temperatures increase relative to the preindustrial period (1850–1900), risks 
to ecosystems, such as changes in structure and function, become more acute beyond the 1.09°C (1.96°F) 
of warming that has already occurred (light gray dashed line). Maximum risk is reached below 4°C (7.2°F) of 
warming in some cases and between 4° and 5°C (9°F) in others. Very high risks to sensitive ecosystems, such as 
coral reefs, are anticipated above 2°C (3.6°F) and will be difficult to reverse. Adapted with permission from Figure 
SPM.3 in IPCC 2022.2

Ecosystem-based and climate-informed management that anticipates and adapts to changes can limit 
damage and increase resilience of ecosystems (Figure 6.7; KM 6.2).14 Strategies include restoration, habitat 
protection and connectivity, assisted migration, and adaptive management.15,16 However, there are limits to 
adaptive management, particularly for unique systems and species and the humans who depend on them.2 
For example, adaptive management may not be able to keep up with rising sea levels that submerge coastal 
communities and ecosystems (KM 9.1) or extreme heat that is intolerable to humans or other organisms 
(KM 15.1).

This chapter focuses on risks to terrestrial, freshwater, and marine ecosystems; more details on the 
following ecosystems can be found as noted: land (Ch. 6), forests (Ch. 7), coasts (Ch. 9), oceans (Ch. 10), and 
agroecosystems (Ch. 11).
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Key Message 8.1  
Change Is Driving Rapid Ecosystem Transformations

Climate change, together with other stressors, is driving transformational changes in eco-
systems, including loss and conversion to other states, and changes in productivity (very likely, 
high confidence). These changes have serious implications for human well-being (very likely, 
high confidence). Many types of extreme events are increasing in frequency and/or severity 
and can trigger abrupt ecosystem changes (medium confidence). Adaptive governance frame-
works, including adaptive management, combined with monitoring can help to prepare for, 
respond to, and alleviate climate change impacts, as well as build resilience for the future 
(medium confidence).

Ecosystem changes can be driven by physical factors (e.g., thermal stress), biological responses (e.g., 
changing ranges), or both, often interacting with stressors from human activities. Multiple stressors, both 
gradual and episodic, can have complex interactive or amplifying effects on ecosystems (Figure 8.4);17,18 for 
example, severe hurricanes can heighten forest vulnerability to drought and/or fire.19,20

Amplifying Climate Change Effects on Watersheds

Climate effects on watersheds exemplify the amplifying impacts of graduate and episodic stressors.

Figure 8.4. Both gradual and episodic (short-lived) climatic drivers alter the transport of water, nutrients, and 
sediments from terrestrial watersheds to downstream water bodies. These drivers affect aquatic ecology and 
ecosystem services throughout the hydrological system, even in areas distant from drivers of change (e.g., more 
intense rainfall leading to leaching of fertilizers that stimulate harmful algal blooms downstream).21 The frequency 
and intensity of episodic extreme events is projected to increase (KM 2.2), raising risks for many species (Figure 
8.10). Figure credit: Cary Institute of Ecosystem Studies.
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Many ecosystems are at increased risk of ecosystem tipping points (where rapid and unpredictable 
conversions to new states occur),22 although it is difficult to predict how, where, and when these changes 
will occur.23,24 Transformative changes in the composition, structure, function, and other properties of 
ecosystems result in a new stable state, or regime, with a different combination of species and communities, 
often resulting in reduced biodiversity and ecosystem services.25,26 Restoring an ecosystem may be difficult 
or even impossible if a critical threshold or tipping point is crossed and a different system emerges, because 
changing or restoring the drivers that led to the altered state may not result in a return to the original state 
(Figure 8.5).27

Tipping Points and Regime Changes

The Arctic faces substantial impacts from thawing permafrost that cannot be reversed. 

Figure 8.5. Thawing of permafrost can cause irreversible tipping points in Arctic landscapes, transforming intact 
ecosystems (left) to severely altered ones (right), with impacts on people. A warming climate and fires lead to 
melting ground ice. Arctic and boreal forests contain permafrost soils with excess ice (more than is contained 
in soil pores), which form 3D networks in the ground. With warming, this ground ice can melt and the ground 
surface collapses (A). Fires, a natural part of the boreal disturbance cycle, are increasing in extent, frequency, 
and severity. Melting ice can lead to accumulation of water in ponds, lakes, and wetlands, but continued thawing 
can cause lakes to drain. Permafrost can also thaw abruptly, causing thaw slumps and bank failures (B). These 
geomorphological changes impact human infrastructure (C) and access to the land (D). Other risks (not pictured) 
include chemical and potentially disease mobilization that can threaten human health and ecosystems.28,29 
Human adaptation strategies to permafrost thaw include installing firebreaks around infrastructure (E). Adapted 
from Schuur et al. 202230 [CC BY 4.0].

Ecosystem changes can be gradual or relatively abrupt31 and depend in part on ecosystem characteristics 
and key species.32 Ecosystems with immobile or long-lived species such as corals or trees can often exhibit 
abrupt responses because they have limited capacity to keep pace.33,34,35 Ecosystems with higher biodiversity 
have more species interactions and often exhibit slow changes at first followed by abrupt shifts.15 Multiple 
stressors can lead to synergistic effects and trigger abrupt changes.36 Examples include the co-occurrence 
of extreme heat, drought, and invasive grasses (Figure 8.6)22 or wildfires followed by insect infestations (or 
vice versa; Focus on Western Wildfires).

https://creativecommons.org/licenses/by/4.0/legalcode
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Abrupt Changes in Ecosystem State

Climate change interacts with other stressors to cause synergistic effects, and resulting ecosystem changes 
can be abrupt and difficult to reverse. 

Figure 8.6. In the western US, drought and longer, hotter growing seasons combined with invasive grasses and 
overgrazing have transformed sagebrush shrublands past a tipping point into annual grasslands that experience 
more frequent wildfires and no longer support native biodiversity and livestock grazing. Removing invasive 
grasses and seeding with native plants often does not restore the original shrubland ecosystem.37 Adapted from 
Foley et al. 201538 [CC BY 4.0].

Vulnerability of ecosystems to climate change depends on exposure to the physical drivers of change and 
characteristics that affect species’ sensitivity and capacity to adapt.39 Examples of vulnerable ecosystems 
experiencing transformation are increasingly common (Figure 8.7). There is evidence that ecosystems with 
higher biodiversity are more resilient in the face of climate change,40,41 indicating that better protection and 
reduced fragmentation and degradation of ecosystems are potential climate-adaptation strategies.42

https://creativecommons.org/licenses/by/4.0/legalcode
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Unique and Vulnerable Ecosystems

Transformations to ecosystems are already noticeable and widespread.

Figure 8.7. There are numerous and widespread examples of ecosystems transforming to altered states, with 
complex drivers and outcomes.22,43,44,45,46 Climate-driven ecological transformations are occurring in all regions 
of the US and often negatively impact the services these ecosystems provide, including regulation of carbon and 
water cycles, wildlife habitat, and recreation. Figure credit: USDA Forest Service, USGS, and NOAA Fisheries. Photo 
credits (clockwise from top right): John Bradford, USGS; Steve Lonhart/NOAA; ©Elizabeth-Ann Jamison; Ilsa B. 
Kuffner, USGS; Sarah K. Schoen, USGS; ©Nicholas Smith; John Bradford, USGS; ©Anna Armitage.
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Monitoring Transformations
Identifying and monitoring species or ecosystem traits that provide early warnings of vulnerability, 
system-wide decline, or tipping points can assist in reducing risks.26,47,48,49 Numerous long-term monitoring 
networks (Figure 8.8) have been established in recent decades in direct response to climate and other 
changes.27,50 Community-led (“citizen”) science efforts such as iNaturalist51 and the USA National Phenology 
Network,52 alongside community-based monitoring networks53 and Indigenous Knowledge holders (KM 
16.3)54 also collect observations across large areas55 and have helped detect altered species distributions, 
abundances, and phenologies.56,57,58 

Monitoring Ecosystem Changes 

Monitoring programs are critically important for observing and projecting trends in resilience, species invasions, 
range shifts, declines, and extinctions. 

Figure 8.8. Federally operated networks (NPS I&M, NERR) and other long-term networks (LTER, LTAR, NEON, 
MBON, AmeriFlux) provide consistent and permanent observations at limited sites, whereas volunteer networks 
(USA-NPN, Indigenous Sentinels) offer more opportunistic observations across a wider landscape. Together, 
these networks provide critical data for understanding species and ecosystem changes, although gaps in 
coverage remain. Figure credit: Lynker and USGS.



Fifth National Climate Assessment

8-15 | Ecosystems, Ecosystem Services, and Biodiversity

Addressing Risks and Managing for Change
Climate change and other disturbances that transform ecosystems create growing management 
challenges.14,59 Building, preserving, or restoring ecosystems is often the most practical and effective 
resilience strategy;60,61 however, ecosystem transformation may still be inevitable.62 Conventional resource 
management approaches are often ill-suited for managing uncertainties and related trade-offs.63,64 In 
contrast, adaptive management iteratively plans, implements, and modifies strategies for managing 
resources under uncertainty. Successful adaptive management requires an overarching adaptive governance 
approach that provides institutional structures and decision-making processes for coordinating efforts 
across scales,65 managing uncertainties and conflicts,66,67 mobilizing diverse knowledges, and addressing 
stakeholder interests.68,69,70 

Decision frameworks designed to anticipate ecosystem transformation can advance adaptative management 
processes (Figure 8.9).71 As one example, the Resist–Accept–Direct (RAD) framework helps identify 
conditions where ecosystem management can resist a trajectory of change, accept change, or direct change 
toward desired future conditions (Figure 8.9b).62,72 To engage the “direct” in their RAD planning, Tetlin 
National Wildlife Refuge in Alaska is combining scenarios, adaptive management, and adaptive pathway 
planning to engage managers and stakeholders to explore potential transformations, with one focus specifi-
cally on subsistence hunting.73 

Adaptation and Transformation Planning Frameworks

Decision frameworks can help plan for the potential transformation of ecosystems. 

Figure 8.9. Two examples of adaptive decision frameworks are the Corals and Climate Adaptation Planning cycle 
(a) and the Resist–Accept–Direct (RAD) framework (b). In (a), users are guided through assessment and design 
considerations to adjust climate-smart management interventions. In (b), the current ecosystem (gray) is affected 
by either moderate or strong transformational forcing that drives decisions (black dots) to resist (red time 
periods), accept (yellow time periods), and direct (green time periods) the trajectory of change. (a) Adapted from 
West et al. 2017, 201874,75 [CC BY 4.0]; (b) adapted from Lynch et al. 2022.72

https://creativecommons.org/licenses/by/4.0/legalcode
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Key Message 8.2  
Species Changes and Biodiversity Loss Are Accelerating

The interaction of climate change with other stressors is causing biodiversity loss, changes 
in species distributions and life cycles, and increasing impacts from invasive species and 
diseases, all of which have economic and social consequences (very likely, high confidence). 
Future responses of species and populations will depend on the magnitude and timing of 
changes, coupled with the differential sensitivity of organisms; species that cannot easily 
relocate or are highly temperature sensitive may face heightened extinction risks (very likely, 
high confidence). Identification of risks (e.g., extreme events) will help prioritize species and 
locations for protection and improve options for management (very likely, high confidence).

Climate-related stressors and other drivers of global change, such as land-use change, habitat destruction, 
and overexploitation, can create significant biodiversity changes and losses (Figure 8.1).76,77 Even short-term 
extreme events such as heatwaves78,79,80 can generate significant species impacts. For example, coral reefs 
are threatened by cumulative impacts of ocean warming and acidification, marine heatwaves resulting 
in bleaching and higher susceptibility to diseases, increasingly powerful tropical cyclones causing loss of 
structural complexity, hypoxia (low oxygen) events, overfishing, and pollution (Figure 8.10a, b; Box 10.1; KMs 
9.2, 10.1).81,82,83,84,85,86 Similarly, wildfires (Focus on Western Wildfires)87 can create risks for some species both 
directly (Figure 8.10c, d) and indirectly through longer-term habitat changes.88
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Extreme Event Impacts

Short-term extreme events can have severe impacts on threatened species.

Figure 8.10. Two examples of such impacts are as follows. (a) High water temperatures off Southeast Florida 
exceeded the maximum average monthly temperature (horizonal line in time series) in 2014–2015, resulting 
in severe bleaching of (b) pillar coral (Dendrogyra cylindrus) colonies and subsequent disease and death of all 
individuals. (c) Wildfires impacted more than 75% of breeding pairs (blue polygons) of (d) Mexican spotted owl 
(MSO; Strix occidentalis lucida) in Smokey Bear Ranger District, New Mexico, in 2012. Figure credits: (a) adapted 
from Jones et al. 202189 [CC BY 4.0]; (c) USDA Forest Service, NOAA Fisheries, and NOAA NCEI. Photo credits: (b) 
©David Gilliam, Nova Southeastern University; (d) ©Serra J. Hoagland, USDA Forest Service. 

Changes in Phenology
Compounding the responses of species to extreme events, the timing of seasonal events such as leaf-out, 
flowering, migration, spawning, phytoplankton blooms, and egg hatching is changing in response to rising 
winter and spring temperatures and to the altered timing and amount of snowmelt and rainfall (Figures 8.8, 
A4.13).58,90,91,92 Changes include earlier flowering and maturity in agricultural crops that affect planting and 
harvest times,93,94,95,96,97 longer and more intense allergy seasons (KM 14.4),98 and increased pest activity.99,100 
Changes are most pronounced at high latitudes and elevations and in urbanized areas.101,102 Phenological 
mismatches emerge when the timing of activities in interacting species changes at different rates, such as 
food availability shifting to no longer match a dependent organism’s needs.103,104 Phenological changes are 
also impacting seasonal carbon cycling105 and increasing vulnerability to spring frost damage (App. 4).106 
There are significant economic and social impacts of these changes, including tourism impacts and loss of 
culturally important species.107,108

https://creativecommons.org/licenses/by/4.0/legalcode
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Range Shifts
Elevational and latitudinal range shifts driven by climate change have already occurred for multiple species 
(Figure 8.11),109,110,111 with range shifts of marine species more responsive and greater in magnitude than 
terrestrial ones (KM 10.1; Figure A4.12).112 Mountaintop ranges are shrinking as species shift upslope, with 
high-elevation ones highly vulnerable.113,114 Milder winters and warmer growing seasons are expected to 
expand ranges for some species.115,116 

Observed Range Shifts and Changes in Phenology 

Climate change is leading to shifts in phenology and range for species across the United States.

Figure 8.11. Many plant and animal species are shifting to higher elevations, to more northern latitudes, or in 
multiple directions (here labeled “regional advancement”). The timing of seasonal activity is similarly shifting in 
response to warmer temperatures and changing precipitation regimes, in many cases occurring earlier in the year, 
although the direction and magnitude of changes are species-specific. Figure credit: University of Arizona and 
USFWS.

Conditions can change over very localized scales, creating complex “mosaic” patterns of environmental 
stressors.117,118,119,120 Climate refugia occur in locations where environmental conditions are changing more 
slowly than in surrounding areas121 or where local drivers override more regional-scale processes.122 These 
refugia are expected to support organisms that can repopulate other depleted areas through dispersal via 
currents or land corridors123 and are therefore a priority for conservation (Figure 8.12).124,125 Identification of 
the many existing refugia expected to disappear under climate change is crucial.126,127
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Environmental Mosaics and Climate Refugia

Climate refugia are locations where environmental conditions are changing more slowly than in the  
surrounding region.

Figure 8.12. Refugia help populations survive extreme events, and when connected via dispersal currents and 
corridors can serve as rescue sites.122 Understanding variations in environmental exposures and organism 
sensitivities to extreme conditions helps forecast climate impacts122,127 and inform management strategies.128,129 
Adapted from Morelli et al. 2016130 [CC0 1.0].

https://creativecommons.org/publicdomain/zero/1.0/legalcode
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Species Sensitivities and Extinction Risks
Understanding species sensitivities to climate impacts and adaptive capacity can help detect ecological 
tipping points (KM 8.1).131,132 Large-bodied animals (Box 8.1)133 and species occupying polar habitats are par-
ticularly at risk of local extinction due to physiological vulnerabilities.134 In contrast, smaller-bodied species 
often have more widely variable responses to changing conditions (Figure 8.13).

Observed Pollinator Sensitivities

Insect pollinator responses to environmental stressors, even within the same taxonomic grouping, can vary 
widely.

Figure 8.13. Pollinator responses to changing climate conditions within a short time frame (the past 10–30 years) 
are leading to complex patterns of species movements across the landscape. Several species of bumble bees 
(panel 1) have had different responses over the past 10 years, from shifting in habitat within their ranges to range 
contractions and extinction risks. In panel 2, butterfly species are responding with declines and shifts within 
existing ranges or with range expansions nationwide. Figure credit: Colorado State University.
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Box 8.1. Case Study: Climate Sensitivities of North Atlantic Right Whales 

The North Atlantic right whale (Eubalaena glacialis) is one of the world’s most endangered large whales, primarily due to 
historical commercial hunting, with fewer than 350 individuals remaining.135 This species is vulnerable to climate change–
driven extinction in part because of its large size, long lifespan, slow growth, delayed maturity, and small number of 
offspring.136 Population recovery has been hindered by climate-driven changes in the distribution, availability, and quality 
of zooplankton, which has altered whale foraging patterns (KM 10.1).133,137,138 As finding shelter and food becomes more 
difficult, the whales become more susceptible to disease, fishing gear entanglements, and vessel strikes, contributing to 
decreased body size and reproductive success (Figure 8.14).139,140 Loss of these whales can have cascading effects on 
ecosystem composition and function.141

Threats to North Atlantic Right Whales

Climate change increases risks to the endangered North Atlantic right whale.

Figure 8.14. The whale known as Snow Cone is shown with her newborn calf near Cumberland Island, 
Georgia, in 2021. She was entangled in fishing rope for at least two years and is currently presumed 
deceased. Such threats are exacerbated as whales travel into new feeding areas because of changing 
oceanographic conditions. Photo credit: ©Georgia Department of Natural Resources/NOAA Permit #20556.

Disease Risks
Disease threats to wildlife, plants, and humans have emerged as a significant climate change 
risk.142,143,144,145,146,147 Climate change promotes range expansions and population growth of disease-spread-
ing (vector) species, increased host susceptibility via stress, and enhanced pathogen transmission (Table 
8.1; KM 15.1),148 with major economic consequences.149,150 Diseases often thrive where other stressors are 
present; prevalence is projected to further increase as populations and ecosystems become stressed from 
temperature variation and extreme events, changes in habitats, altered migration patterns and ranges, bio-
diversity loss, and increases in invasive species (KMs 15.1, 30.4; Figure A4.16).151,152,153,154
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Table 8.1. Climate-Impacted Disease Risks in Humans and Wildlife

Numerous wildlife and human diseases (KM 15.1) are expanding to new areas and species and becoming more common as 
climate change expands vector ranges and changes species interactions and habitat preferences. Sources: Islam et al. 2022; 
Gilbert 2021; Ogden et al. 2021; Sonenshine 2018; Keesing and Ostfeld 2021.152,153,155,156,157

Pathogen: Virus

Disease Affected Organisms

West Nile virus Birds and mammals

Viral hemorrhagic septicemia virus Freshwater and marine fish

White spot syndrome virus Aquatic crustaceans

Tomato spotted wilt virus Plants

Example of impacts: Viral hemorrhagic septicemia damages wild and farm-raised fish such as rainbow trout, with patterns of 
spread and establishment being highly correlated with climatic variables (temperature, precipitation).158

Pathogen: Bacteria

Disease Affected Organisms

Furunculosis Trout and salmon

Enteric red mouth disease Freshwater and marine fish

Citrus greening Plants

Example of impacts: Citrus greening is a bacterial disease transmitted by an invasive insect (Asian citrus psyllid). Because the 
disease is highly sensitive to temperature, climate change is expected to allow it to spread farther.159 Since 2005, Florida citrus 
production has declined 74%.160

Pathogen: Fungus

Disease Affected Organisms

White-nose syndrome Bats

Chytridiomycosis Amphibians

Rapid ‘Ōhi‘a death Plants

Armillaria root rot Plants

Example of impacts: Rapid ‘Ōhi‘a death is a fungal disease that impacts ‘Ōhi‘a lehua, a Hawaiian keystone species with 
important functional and cultural roles. Large-scale mortality is projected to worsen in a warmer and wetter climate.161
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Pathogen: Parasite

Disease Affected Organisms

Avian malaria Birds

Proliferative kidney disease Salmon

Brainworm Moose, elk, caribou

Seagrass wasting disease Aquatic plants

Example of impacts: Brainworm is a parasitic nematode spread via white-tailed deer, which are currently expanding farther 
northward. In moose, population declines due to brainworm are already affecting subsistence hunting among some Tribal 
communities.162

Pathogen: Unknown

Disease Affected Organisms

Stony coral tissue loss disease Corals

White band disease Corals

Colony collapse disorder Bees

Example of impacts: Stony coral tissue loss disease originated in Florida in 2014 and has spread throughout the Caribbean, 
with thermal stress implicated in reef vulnerability. The disease affects more than 30 coral species, including many important 
reef-builders. Rapid spread and high mortality rates have had serious economic consequences for tourism and fishing.163



Fifth National Climate Assessment

8-24 | Ecosystems, Ecosystem Services, and Biodiversity

Invasive Species Risks
Climate change has created uncertainty about where and how fast invasive species will spread, but there are 
both observed cases164 and projections showing expected increases.165 For example, cold-sensitive invasive 
species such as the kudzu vine (Pueraria montana var. lobata) can spread northward with warming.166 Some 
invasive species are more successful than natives—particularly certain terrestrial plants167 and aquatic 
species168—because they better tolerate or more rapidly adapt to changing conditions (Figure 8.15). Yet not 
all invasive species are favored by climate change; many invasive plants and vertebrates may experience 
decreased ranges while the ranges of many invasive invertebrates and pathogens are expected to increase.169

Invasive Species and Climate Change

Damaging invasive species that are expected to shift in range because of climate change.

Figure 8.15. Examples of invasive species include the following: (a) Hemlock woolly adelgid, an insect pest, is 
expected to spread northward with warmer winters and cause die-offs of eastern hemlock trees.170 (b) Invasive 
carp are expected to benefit from warmer waters and expand into the Great Lakes, where they will compete 
with native fishes and present boating hazards through their habit of jumping out of the water.171 (c) Eurasian 
watermilfoil chokes freshwater systems and outcompetes natives in warmer conditions.172 (d) European green 
crabs, which benefit from warmer waters, harm economically important native shellfish fisheries.173 Photo credits: 
(a) Kerry Wixted via Flickr [CC BY-NC 2.0]; (b) Steve Hillebrand, USFWS; (c) ©Stephen K. Hamilton, Cary Institute of 
Ecosystem Studies; (d) ©P. Sean McDonald, University of Washington.

https://creativecommons.org/licenses/by-nc/2.0/legalcode
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Assisting Species Adaptation
Natural resource managers are implementing adaptation actions including increasing conservation 
efforts, reducing habitat fragmentation, protecting wildlife corridors, assisting species migration, and 
expanding protection activities.174 For example, marine protected areas can reduce non-climate stressors 
like overfishing and facilitate recovery of populations following extreme events like heatwaves, which then 
benefits recreational and commercial fishing in surrounding areas (KM 28.2).175 Many states now include 
climate impacts in state wildlife action plans; for example, Massachusetts has identified habitat patches 
allowing for movement of the threatened Blanding’s turtle and is creating habitats that balance increased 
drought and other threats.176,177,178

Managing for connectivity can enhance species climate resilience, particularly for wide-ranging 
and migratory species.179 Priorities include connecting climate refugia, areas of high diversity,123,180 
and current and future habitat types.181 For example, resilience strategies for the saltmarsh sparrow 
(Ammospiza caudacuta), which has declined dramatically due to rising sea levels, include protection of 
areas expected to convert into future wetlands, use of runnels and other elevation manipulations, and 
high-marsh restoration.182,183

Assisted migration has been implemented for at-risk species such as the Laysan albatross, O‘ahu tree snail, 
relict leopard frog, and wolf (Figure 8.16).184 In the Chippewa National Forest in Minnesota, seeds of tree 
species native to red pine forests but collected 100–200 km to the south—and thus genetically distinct from 
local populations—are being planted to test assisted migration.185

Managing for Species Adaptation

Assisted migration can help species adapt to changing climate conditions.

Figure 8.16. One example is the translocation of wolves to Isle Royale National Park, Michigan. The loss of ice 
bridges in winter prevented new arrivals that would have maintained genetic viability of the population.186 Photo 
credit: Jacob W. Frank, NPS.
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Implications for Management
While protected areas can help species adapt to climate change, these areas are themselves 
vulnerable;174,187,188,189 many US protected areas are expected to see major shifts in vegetation communities 
and other species.190 Further, the existing US protected areas system has low overlap with projected climate 
refugia;191 extending protection to include future habitat suitability for some species may double costs.192 
Given continued range shifts, areas with priority species that draw tourists (e.g., bird watchers) will need to 
refocus as some species become rarer or disappear,193,194 impacting neighboring communities dependent on 
tourism revenue.

Conflicts (between humans and with wildlife) arising from climate-driven changes in distribution and 
availability of species and resources are occurring.195,196 For example, some species are moving out of 
areas set up to conserve them, and range shifts of fish stocks (including across international boundaries) 
are causing challenges (KM 10.1).197,198 Some adaptation policies (e.g., translocation of nonhuman species 
into human communities unwilling to coexist with them) may exacerbate conflicts (KM 17.2).199 Adaptive 
management that prioritizes both climate change response planning and conflict management can reduce 
negative outcomes.195,200,201

Key Message 8.3  
Impacts to Ecosystem Services Create Risks and Opportunities

Climate change is having variable and increasing impacts on ecosystem services and benefits, 
from food production to clean water to carbon sequestration, with consequences for human 
well-being (very likely, high confidence). Changes in availability and quality of ecosystem 
services, combined with existing social inequities, have disproportionate impacts on certain 
communities (very likely, high confidence). Equity-driven nature-based solutions, designed to 
protect, manage, and restore ecosystems for human well-being, can provide climate adaptation 
and mitigation benefits (likely, medium confidence).

Ecosystem services provide substantial and often economically important contributions to communities, 
ranging from direct material benefits like food production and clean water to nonmaterial benefits like 
recreation (Figure 8.17). However, economic valuation alone does not reflect intrinsic or relational values 
that people hold toward nature;202,203 for example, Tribal and Indigenous Peoples rely on ecosystems 
for supplies of culturally valuable food, materials for religious ceremonies, and relational links within 
communities and among generations (KM 16.1).204,205
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Ecosystem Services and Their Benefits

Ecosystems provide a broad range of relational benefits, from the material to the spiritual.

Figure 8.17. Ecosystem services, also called “nature’s contributions to people,” are the benefits that humans 
receive or derive from ecosystems. These are both material (e.g., energy sources) and non-material (e.g., sense 
of place), and contribute to the regulation of ecosystem processes. The broad categories of benefits pictured are 
fluid and overlapping. People value nature in multiple ways, such as “living as” nature (e.g., Indigenous viewpoints 
that humans are part of the environment; Figure 16.3) or “living from” nature (e.g., people’s dependency on key 
services). Adapted from O’Connor and Kenter 2019206 [CC BY 4.0].

There are many adverse climate change effects on ecosystem services,207,208 including reduced water avail-
ability for human and agricultural uses (KM 4.1), decreased productivity of crop species due to increased 
pest infestations (KM 11.1), and losses of hazard-mitigating ecosystems like wetlands and coastal shorelines 
that provide nursery and nesting habitat, recreation, and aesthetic pleasure (Table 8.2; KM 9.2). However, 
future trends on ecosystem use and benefits are not always clear. For example, rising temperatures can 
extend seasonal recreational opportunities, but if daily high temperatures exceed 27°–30°C (80.6°–86°F), 
recreation tends to decrease.209,210

https://creativecommons.org/licenses/by/4.0/legalcode
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Further, diminished benefits from ecosystem services can also occur based on other factors.211,212 For 
example, discriminatory planning practices, housing segregation, and racism have created inequitable 
distributions of services, leading to communities of color experiencing reduced access to benefits like 
improved air quality or heat reduction (KM 12.2; Figure 12.6).213,214,215 Lack of access often accompanies other 
environmental harms (e.g., greater exposure to allergens or risks of green gentrification, the displacement 
of local residents as environmental benefits improve).216,217 Climate change is expected to exacerbate these 
impacts207 and create further difficulties in addressing environmental racism, highlighting the need for clear 
management priorities and recognition of diverse values.218,219

Table 8.2. Examples of Climate Impacts on Ecosystem Services

Climate change affects the availability and quality of many ecosystem services, and many projected impacts on important 
ecosystem services will also have equity implications

Ecosystem Service Potential Climate Impacts Equity Implications

Regulation of 
Natural Hazards

Coastal marsh retreat is projected 
due to sea level rise and increased 
storm activity.220

Flood risks are often inequitably distributed; for 
example, property damage risks can be dispro-
portionately higher for Black communities.221

Physical and 
Psychological Experiences

Cold-weather recreational opportu-
nities are projected to decline (e.g., 
fewer skiing days).209,210,222

Less green space access in low-income 
communities and communities of color 
already results in fewer opportunities for 
recreation.223,224

Water Quantity 

Changes in precipitation, snowpack, 
soil moisture, and evapotranspiration 
are projected to alter surface and 
groundwater availability (KM 4.1; 
Figure A4.7).

Drought often has disparate impacts;225 
for example, Tribal reservations in the US 
Southwest with higher agricultural dependence 
will be particularly impacted.226

Regulation of Air Quality

Street trees provide considerable 
urban air quality benefits but are 
vulnerable to drought and heat.227

Existing tree canopy distribution is inequitable, 
accounting for greater air pollution228,229,230 
associated with legacies of redlining.231

 
Food Production (fisheries)

Aquatic systems are experi-
encing shifts in species ranges, 
phenologies, distributions, and 
productivities.232

Culturally important species, such as Chinook 
salmon for Pacific Northwest Tribes, are 
projected to dramatically decline in the future.233
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Opportunities for Nature-Based Solutions
Ecosystem-based mitigation and adaptation opportunities are often called nature-based solutions (NBSs) or 
natural climate solutions (Figure 8.18).234,235 NBSs support biodiversity and can provide other benefits when 
managed in collaboration with affected communities and use of local knowledge (KM 21.1). For example, 
coastal wetland restoration provides both mitigation and adaptation benefits by sequestering carbon and 
decreasing coastal flooding, wave action, and erosion236 while improving water quality and increasing habitat 
biodiversity (KM 9.3; Focus on Blue Carbon).237 NBS projects are often very cost-effective, spurring new 
financing options.238,239

Ecosystem-based adaptation is a type of NBS aimed at increasing community resilience to climate change 
through the use of ecosystems.240,241 Examples include protecting and restoring floodplains to help reduce 
flood impacts242 or helping farmers cope with drought through soil conservation measures.243 There are high 
returns on investments to restore coastal ecosystems in particular, since US coral reefs provide estimated 
adaptation benefits of more than $1.8 billion annually (dollar year not provided).244,245 These approaches can 
also have positive equity benefits when designed with local participation and buy-in through collaborative 
approaches (KM 31.4).246,247,248,249,250,251
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Nature-Based Solutions

Nature-based solutions buffer the effects of climate change.

Figure 8.18. Nature-based solutions (NBS) are actions to protect, manage, and restore ecosystems to address 
societal challenges such as climate change. Examples in the US include (a) oyster restoration; (b) cover cropping; 
(c) stormwater management; and (d) urban agriculture. These not only help buffer the impacts of climate change, 
such as through physical barriers or improved local microclimates, but also provide additional benefits like food 
and habitat provisioning.252,253,254 Figure credit: Rutgers University and NPS. See figure metadata for additional 
contributors. Photo credits: (a) Linda Walters, NPS; (b) David Bosch, USDA; (c) Alisha Goldstein, EPA; (d) Bob 
Nichols, USDA.



Fifth National Climate Assessment

8-31 | Ecosystems, Ecosystem Services, and Biodiversity

Current and future opportunities for NBSs exist across the US, particularly for mitigation solutions focused 
on protecting and increasing carbon storage by natural ecosystems (Figures 6.6, 8.19; Focus on Blue 
Carbon).255 Planning for future protected areas for both climate and biodiversity could emphasize areas that 
not only hold large amounts of carbon but also help species adapt,256 recognizing the important role that 
many animal species play in carbon cycling.257 However, NBSs themselves are also vulnerable to rising tem-
peratures, sea level rise, and other climate impacts.258

Climate Mitigation Potential of Nature-Based Solutions in 2025

Nature-based solutions can support carbon storage while also providing other benefits.

Figure 8.19. Nature-based solutions (NBSs) can preserve or enhance carbon storage in soils and biomass across 
natural systems like forests, grasslands, and wetlands, as well as agricultural lands. Different approaches vary 
in their climate mitigation potential, shown here as teragrams of carbon dioxide equivalent (Tg CO2-eq per year; 
length of bars) in the year 2025. Lighter green shades indicate the estimated portion of mitigation obtainable for 
less than $10, $50, or $100 per megagram of CO2-eq (Mg CO2-eq). The dark green “Maximum” category shows the 
highest technical carbon sequestration potential that is also consistent with meeting human needs for food and 
fiber. Black lines are error bars indicating either the 95% confidence interval or an uncertainty range, depending 
on the source of the estimate. The arrow indicates a range that may exceed the values shown on the chart. Other 
potential benefits of NBSs are also indicated for each category (colored dots). Figure addresses contiguous US 
only. Adapted from Fargione et al. 2018259 [CC BY 4.0].

NBSs that involve restoring degraded ecosystems can improve resilience260 and increase provision of 
ecosystem services.261 Ideally, restoration is designed to recover a range of potential benefits.262,263 However, 
multiple services cannot necessarily be maximized simultaneously, as focusing on one ecosystem service at 
the expense of other benefits leads to trade-offs.264,265,266 Larger-scale restoration efforts are generally more 
successful when connected to local priorities,267 including their use in addressing environmental inequities 
(Box 8.2).268

https://creativecommons.org/licenses/by/4.0/legalcode
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Box 8.2. Restoration and Ecosystem Management by Tribal Nations

Tribal forestry programs throughout the US provide exemplary models of Indigenous land management practices that 
showcase Tribes’ ability to balance sustainable environmental stewardship, fulfilling the social, ecological and economic 
needs of their communities.269 The “anchor forests” concept, in which Tribes are at the center of multiple landownerships 
and serve as the primary hub for providing forest management infrastructure, is one effective approach. Such initiatives 
maximize concepts of Tribal sovereignty and Indigenous Knowledge to restore forests at the pace and scale needed 
to mitigate and adapt to rapid climate change.270 Furthermore, traditional and contemporary Indigenous management 
practices that support both cultural and spiritual relationships with nature and an equitable climate transition can serve as 
critical pathways to sustaining ecosystems (KMs 7.3, 16.1).271 Incorporating local knowledge and Indigenous Peoples in 
the co-development of restoration activities can produce considerable benefits.272
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Traceable Accounts
Process Description
The chapter lead author, coordinating lead author, and agency chapter lead authors discussed the Fourth 
National Climate Assessment (NCA4) ecosystems chapter and brainstormed topics that had emerged since 
then or were not well covered. The chapter lead author also pulled out key gaps identified from the US 
Global Change Research Program assessment review document and public comments. A tentative list was 
compiled of authors with expertise in ecosystems, biodiversity, and ecosystem services; marine, freshwater, 
and terrestrial systems covering NCA regions; and ecosystem types. The final author team comprised a 
mix of federal agency scientists and academic experts with varying experience in assessments and past 
NCAs. Key Messages were developed by the full author team through virtual meetings from fall 2021 
through spring 2022, with additional inputs from a public engagement workshop held in January 2022, in 
which over 100 people participated virtually to suggest topics for review by the chapter. A Youth Dialogues 
public engagement workshop was held online in February 2022 in partnership with the Youth Environ-
mental Alliance in Higher Education and Rutgers Climate Institute. Federal agency reviews in summer 
2022 provided further suggestions for improvement, as did additional public comments and the National 
Academies review in spring 2023. At the April 2023 in-person meeting in Washington, DC, the author team 
collectively discussed the wording and confidence levels for the three Key Messages to ensure consensus 
around the statements.

Since NCA4, a plethora of research has been published describing how ecosystems are changing or are 
expected to change further in the face of climate change and other stressors, along with numerous specific 
species and ecosystem services impacts. The evidence base for this report is therefore heavily weighted to 
peer-reviewed journal articles published in the last five years.

Key Message 8.1  
Climate Change Is Driving Rapid Ecosystem Transformations

Description of Evidence Base
Ecosystem Regime Shifts
Many examples of regime shifts resulting from transformative changes are already documented, and the 
evidence base is strong across multiple ecosystem types,273 including forest transformations to grassland 
or woodland following increased wildfires; widespread die-off of pinyon pines from drought and bark 
beetle infestations; and shifts from healthy kelp forests to urchin barrens due to epizootic disease and 
marine heatwaves in nearshore marine environments.144,274,275,276,277,278,279,280 Overall, regime shifts of temperate 
ecosystems toward more subtropical ones at their southern limits are expected in response to future 
decreases in the frequency and intensity of extreme cold events.45 For example, mangrove forests in Florida 
and along the Gulf Coast are projected to expand northward into present-day salt marshes.43

Monitoring
Systematic biodiversity surveys, digitized museum records, and long-term automated data collection have 
all demonstrated the importance of multiple methods of monitoring of environmental changes through 
strong evidence bases.281,282,283,284
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Major Uncertainties and Research Gaps
Complexity of Impacts on Ecosystems
The ability to predict ecological responses to changing climate conditions remains a key gap for most 
ecosystems because of complex interactions among species, the potential for adaptation (through both 
evolutionary responses and human activity), and the intersection of climate change with other drivers of 
change.36,285,286 For example, warmer temperatures can lead not only to increased forest regeneration and 
tree growth but also to increased mortality of older trees through wildfires, insects, and disease, with the 
resulting net impacts highly uncertain.287 Warmer winters are generally expected to benefit forest pests,288 
but complex interactions among pests, their hosts, and other disturbances can make the combined effects 
more muted than otherwise expected.289,290,291 Recent research suggests that multiple disturbances can have 
counteracting effects, although patterns are not always clear, and sometimes intensified combined effects 
(synergies) also occur.292,293

Monitoring
There are a number of gaps in comprehensive, long-term ecological monitoring to detect changes and 
to predict the risks of future climate change.48 Improved knowledge of biological response mechanisms 
that drive ecological changes36 will enable better anticipation of ecosystem shifts, especially for systems 
dominated by long-lived species and where impacts emerge after a time lag;294,295 this makes eliminating 
monitoring gaps (e.g., in Arctic and ocean regions) critical. Community monitoring programs are promising 
but can be biased (e.g., lack of uniform sampling) toward particular regions or species.296 

Adaptive Management
While adaptive management is widely considered an effective approach for managing uncertainty through 
learning in order to conserve, manage, and restore ecosystems and species populations,297 successful imple-
mentation is limited by the lack of effective monitoring mechanisms,298 challenges in dealing with uncertainty, 
and lack of appropriate institutional mechanisms for its implementation, among other problems.299,300,301,302 
As a result, an adaptive governance approach is increasingly understood as a broader and more promising 
mechanism for addressing the social and institutional requirements of adaptive management while also facili-
tating social–ecological transformation.300,303 However, the adaptive governance approach also has its own 
conceptual and implementation challenges that need to be addressed in order to enhance success, given 
insufficient evidence on effective implementation298 and questions about its capacity to bring about trans-
formational changes.304 There is also potential for undesirable outcomes, such as inadequate consideration 
of power and social equity issues.305,306,307,308 Moreover, there are gaps in research on enhancing the transition 
process toward adaptive management and governance and associated outcomes,309 as well as lack of clarity 
on the synergies and trade-offs among determinants of the capacity for adaptation and transformation.310,311

Description of Confidence and Likelihood
A growing body of empirical field studies and monitoring programs shows that climate change, in concert 
with other stressors, is driving transformational changes across many ecosystems and that changes will 
accelerate with continued warming (very likely, high confidence). Given the growing impacts of ecosystem 
change, the serious implications for human well-being were also considered very likely, and the authors 
assessed high confidence, given the empirical studies across multiple ecosystems (i.e., not just projections) 
showing that a range of well-being impacts are already being experienced across economic, cultural, and 
social systems. As Chapter 2 has indicated, extreme events are increasing in frequency and/or severity, and 
these events are more frequently implicated in abrupt ecosystem changes; but because of limited studies 
examining the direct correlation of extreme events on abrupt ecosystem transformations, the authors 
assessed only medium confidence. The authors also note that adaptive governance frameworks, adaptive 
management, and monitoring all play a role in helping to cope with climate changes; but given the paucity of 
evidence of long-term impacts of adaptive governance, the authors assessed only medium confidence.
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Key Message 8.2  
Species Changes and Biodiversity Loss Are Accelerating

Description of Evidence Base
Range Shifts
Shifts in species ranges in response to changing climate occur across a wide range of species and are 
expected to accelerate.312,313 The evidence base is strong across a wide range of marine, plant, invertebrate, 
reptile, bird, and mammal species; selected examples are shown in Figure 8.11, but many more exist. Further, 
there is strong evidence for the patterns of range shifts differing among types of species; for example, 
multiple studies have shown that marine species have expanded their ranges more readily than terrestrial 
species, with shifts in distributions occurring more quickly as well,314,315 whereas terrestrial species tend to 
have greater behavioral adaptations and less physiological sensitivity to temperature changes.316,317,318

Phenological Changes
The evidence base of documented responses in the timing of life cycles to climate change is strong, ranging 
from earlier flowering dates in many parts of the country, to shifts in hibernation of mammals, to timing of 
egg laying of frogs.319,320 Very rapid changes can be easily observed, for example, in short-lived plants that 
have high turnover rates and more rapid genetic adaptation,321 lending strength to the evidence base.

Extinction Risks
Long-term studies (i.e., decades) are needed to discern the fingerprints of climate change on long-lived 
animals,322 which can be challenging. But some impacts are in evidence; for example, sea level rise is 
expected to impact nesting site availability and quality for sea turtles, while warming temperatures can 
affect sex ratio of offspring.323,324 Refugia have potential to mitigate some extinction risks for species able 
to take advantage of them, but the evidence base is fairly new. Further, emerging modeling studies have 
indicated that these areas, too, are at risk; for example, Ebersole et al. (2020)127 found that under a 4°C (7.2°F) 
warming scenario, there was a >50% probability that refugia for freshwater fish species would decrease in 
area by 42%–77% by 2070.

Disease Risks
Disease risks are occurring as a result of many factors and across different hosts and pathogens; given the 
large number of potential risks, meta-analyses have been helpful in providing overviews of the evidence 
base. One comprehensive review of infectious diseases spread between humans and animals found that 58% 
of diseases worldwide have been exacerbated by climate change (e.g., warming, altered precipitation, and 
floods).154 Only 16% of diseases were diminished by climate change. A global analysis of thousands of wildlife 
populations indicated that climate warming exacerbates wildlife disease throughout the temperate zone 
worldwide and is expected to increase wildlife disease in the United States.325 A different global analysis of 
6,801 ecological assemblages demonstrated that human-dominated ecosystems strongly favored animal 
species that host human disease pathogens while decreasing the presence of non-host animals,326 a strong 
evidence base for the finding that stressed ecosystems tend to experience more disease risk.153 Many 
empirical examples of ongoing disease outbreaks—e.g., fish kills and large-scale coral disease outbreaks 
following coral bleaching events—have increased in number and are evidence of perturbed aquatic systems 
where disease stresses are exacerbated by warming.144,146 The well-documented catastrophic declines in 
amphibian populations caused by the invasive chytrid fungus Batrachochytrium dendrobatidis have also been 
well linked to warming conditions.327
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Major Uncertainties and Research Gaps
Range Shifts
The speed and extent of some species range shifts remain uncertain. Climate envelope models use current 
relationships among species ranges and climatic characteristics to project how ranges may shift in the face 
of climate change,328 yet they necessarily assume that climate is the main constraint on ranges and that 
species rapidly respond. In reality, species responses can be slowed and limited by dispersal ability, natural 
and human-created barriers, and species interactions.329,330

Moreover, climate change is expected to present organisms with novel environmental conditions, making 
predictions based on historical relationships problematic.331 Specifically, improving such predictions would 
require a better understanding of the degree to which range shifts occur due to longer-term climatic 
changes versus periodic extreme weather events such as heatwaves brought on by those climatic changes.86 

While climate refugia are increasingly discussed in the literature, they are themselves vulnerable to climate 
impacts, and there is uncertainty about their persistence and resilience.126,127

Phenological Changes
The individual and variable responses of species to climate change is expected to disrupt important 
biological interactions. Many risks posed by emerging mismatches among interacting species remain 
unclear,332 as do needed management responses to reduce economic and social impacts.

Diseases and Invasives
Impacts of climate change on species health are complex and difficult to generalize across systems;291 for 
example, the role of climate change among other drivers of the spread of tick-borne diseases, like changes 
in land use or human behavior, remains a topic of some debate.152,156

Studies showing that invasives could be limited in response to climate change are based mostly on studies of 
terrestrial species whose range shifts are often limited by oceans,169 indicating that more research is needed 
on different types of species to improve projections.

Description of Confidence and Likelihood
There is high confidence that the interaction of climate change with other stressors will very likely lead 
to biodiversity loss, changes in species distribution and life cycles, and increasing impacts from invasives 
and diseases, given a very well-documented range of species changes across multiple ecosystem types, 
as well as clear economic and social consequences in many regions already experiencing these impacts. 
The evidence is strong, and the authors assessed high confidence that some species, particularly those that 
cannot easily relocate and those that are highly temperature sensitive, are facing heightened extinction 
risks, and that these are very likely, given that some species populations are already in serious decline 
at current levels of warming. Policy actions to help species adapt were assessed, and what they have in 
common is a clear identification of risks and prioritization of species and locations for protection. The 
evidence base for these policy actions is clear, and the authors have high confidence that such actions can 
expand and improve options for management.
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Key Message 8.3  
Impacts to Ecosystem Services Create Risks and Opportunities

Description of Evidence Base
Access to Ecosystem Services
There is strong evidence that communities of color experience greater air pollution inequity228,229,230,231 
compared to White communities and have reduced and/or less high-quality access to green space, trees, 
and other ecosystems that buffer these impacts. Limited access to resources and services also extends to 
those with limited income or wealth (also known as economic capacity), and these factors interact with race 
and other social hierarchies, including power, in complex ways.333

Climate Impacts on Ecosystem Services
There is strong evidence at the global level that warming and carbon dioxide fertilization effects have 
already altered some ecosystem services, such as coastal carbon storage and ecosystem biodiversity, as 
noted in the recent Intergovernmental Panel on Climate Change report.2 For the US, while not all ecosystem 
services have been quantitatively assessed for climate impacts, those that have been show either currently 
observable declines (e.g., nearly 40% of pollinator-dependent crops in the US suffer from low pollinator 
abundance)334 or projections of future decline (e.g., reduced outdoor recreation opportunities by 2050).210

Restoration
Evidence for the effectiveness of restoration at improving ecosystem service benefits is growing as 
more landscape-scale restoration is undertaken across multiple ecosystems.263 Additionally, valuation 
of ecosystem services benefits has proven to be a strong driver of new restoration programs, as it helps 
identify potential ecosystems to manage or restore (e.g., how health benefits can be obtained from 
restoration of vegetated terrestrial systems).262

Major Uncertainties and Research Gaps
Measurement, Valuation, and Management of Ecosystem Services
There remain challenges in measuring, monitoring, and evaluating the impacts and effectiveness of many 
ecosystem services.335 In the US, urban spaces continue to be under-researched, especially in communities 
of color, despite often being biodiverse environments;336 and current research is usually limited to city-spe-
cific case studies of ecosystem services measurements and analyses, with less focus on comparative 
work.248,337 Furthermore, many city planning documents do not include climate change adaptation practices 
regarding cultural services or environmental injustice in ways that translate to implementation338 and 
instead focus on physical and natural resources, costs, or logistics.247 Research that engages communities, 
residents, and small organizations in identifying and designing measurements, valuation, and management 
criteria is a persistent gap, given the continuing lack of resident participatory research and community 
science in identifying problems and implementing solutions. A few studies have connected multiple types 
of urban ecosystem services from a theoretical planning point of view,248,337,339 but integrating justice into 
ecosystem service practices by prioritizing community needs, aligning methods of assessment and criteria 
to goals, and addressing environmental racism is a critical gap.247

Restoration
There are few examples of ecological restoration practices designed to be resilient to climate change,340,341 
with particular challenges around making decisions about what needs to be “restored”342 and to what 
conditions or baseline, as well as how to minimize vulnerability to extreme climate events that may be 
unprecedented in recent history. There can be spatial disconnects between where restoration actions need 



Fifth National Climate Assessment

8-38 | Ecosystems, Ecosystem Services, and Biodiversity

to be implemented and where ecosystem service improvements will be observed,343 and the economic cost 
of restoration efforts and stakeholder preferences for desired states can prevent recovery efforts.344

Nature-Based Solutions (NBSs)
NBSs could cause risks of undesirable outcomes if they entail ecosystem transformations or species intro-
ductions over large areas of land; thus, they require careful study prior to implementation to avoid exac-
erbation of environmental and social injustices.345,346 There are increasing cases of poorly designed NBSs 
and rising concern over second-order effects, like green gentrification.216,217 However, there are consid-
erable research gaps regarding how to avoid these outcomes. Evidence suggests that more stakeholder 
engagement in carbon removal projects and policies could help maximize adaptation benefits,347 but this is 
an area of ongoing research.

Description of Confidence and Likelihood
There is high confidence that climate is having variable and growing impacts on many ecosystem services, 
based on an expanding literature containing many regional examples. These changes are assessed as very 
likely, given the existing levels of warming in areas where impacts have already been observed. There is 
high confidence that these changes in availability and quality of ecosystem services, when combined with 
existing social inequities that are also well documented, will result in disproportionate impacts on some 
communities. These disproportionate impacts were assessed as very likely, given that impacts are already 
visible, particularly in urban areas. The authors assessed it to be likely that nature-based solutions designed 
to be equitable can provide multifunctional benefits for climate adaptation and mitigation, although there is 
only medium confidence that current examples of nature-based solutions are able to fully address mitigation 
and adaptation needs in an equitable manner, given a growing body of evidence that poorly designed or 
inequitable nature-based solutions do continue to be implemented in some places.
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